From Nimrod Megiddo (IBM Almaden)
I do not agree that "causality" is the key to resolving the paradox (but this is also a matter of definition) and that tools for looking at it did not exist twenty years ago. Coming from game theory, I think the issue is not difficult for people who like to draw decision trees with "decision" nodes distinguished from "chance" nodes.
I drew two such trees on the attached Word document which I think clarify the correct decision in different circumstances.
Click here for viewing the trees.
From David Kenny (University of Connecticut)
Let me just say that it is very gratifying to see a philosopher give the problem of causality some serious attention. Moreover, you discuss the concept as it used in contemporary social sciences. I have bothered by the fact that all too many social scientist try to avoid saying "cause" when that is clearly what they mean to say. Thank you!
I have not finished your book, but I cannot resist making one point to you. In 5.4, you discuss the meaning of structural coefficients, but you spend a good deal of time discussing the meaning of epsilon or e. It seems to me that e has a very straight-forward meaning in SEM. If the true equation for y is
y = Bx + Cz + Dq + etc + r where is r is meant to allow for some truly random component, then e = Cz + Dq + etc + r or the sum of the omitted variables. The difficulty in SEM is that usually, though not always, for identification purposes it must be assumed that e and x have a zero correlation. Perhaps this is the standard "omitted variables" explanation of e that you allude to, but it does not seem at all mysterious, at least to me.