### On the Classification and Subsumption of Causal Models

From Christos Dimitrakakis:

>> To be honest, there is such a plethora of causal models, that it is not entirely clear what subsumes what, and which one is equivalent to what. Is there a simple taxonomy somewhere? I thought that influence diagrams were sufficient for all causal questions, for example, but one of Pearl’s papers asserts that this is not the case.

Reply from J. Pearl:

Dear Christos,

From my perspective, I do not see a plethora of causal models at all, so it is hard for me to answer your question in specific terms. What I do see is a symbiosis of all causal models in one framework, called Structural Causal Model (SCM) which unifies structural equations, potential outcomes, and graphical models. So, for me, the world appears simple, well organized, and smiling. Perhaps you can tell us what models lured your attention and caused you to see a plethora of models lacking subsumption taxonomy.

The taxonomy that has helped me immensely is the three-level hierarchy described in chapter 1 of my book Causality: 1. association, 2. intervention, and 3 counterfactuals. It is a useful hierarchy because it has an objective criterion for the classification: You cannot answer questions at level i unless you have assumptions from level i or higher.

As to influence diagrams, the relations between them and SCM is discussed in Section 11.6 of my book Causality (2009), Influence diagrams belong to the 2nd layer of the causal hierarchy, together with Causal Bayesian Networks. They lack however two facilities:

1. The ability to process counterfactuals.

2. The ability to handle novel actions.

To elaborate,

1. Counterfactual sentences (e.g., Given what I see, I should have acted differently) require functional models. Influence diagrams are built on conditional and interventional probabilities, that is, p(y|x) or p(y|do(x)). There is no interpretation of E(Y_x| x’) in this framework.

2. The probabilities that annotate links emanating from Action Nodes are interventional type, p(y|do(x)), that must be assessed judgmentally by the user. No facility is provided for deriving these probabilities from data together with the structure of the graph. Such a derivation is developed in chapter 3 of Causality, in the context of Causal Bayes Networks where every node can turn into an action node.

Using the causal hierarchy, the 1st Law of Counterfactuals and the unification provided by SCM, the space of causal models should shine in clarity and simplicity. Try it, and let us know of any questions remaining.

Judea