### THEORETICAL IMPEDIMENTS TO MACHINE LEARNING

WITH SEVEN SPARKS FROM THE CAUSAL REVOLUTION

Judea Pearl University of California, Los Angeles judea@cs.ucla.edu

## OUTLINE

- Model-blind machine learning is a curve-fitting exercise slow and dumb
- · The Causal hierarchy
- What we miss by depriving ML of causal models
- The Seven Sparks of the Causal Revolution

# CAUSAL MODELS AND THE COGNITIVE REVOLUTION

- 10,000 years ago, human beings accounted for less than a tenth of 1 percent of all vertebrate life on planet Earth.
  Today, that percentage, including livestock and pets, is in the neighborhood of 98! (Daniel Dennett, 2006)
- What Happened?
- What computational facility did humans acquire 10,000 years ago that they did not possess before?

# COUNTERFACTUALS: THE HOMOSAPIENS' SECRET

| 3. COUNTERFACTUALS ACTIVITY: Imagining, Retrospection QUESTIONS: What if i had done? Why? (Was it X that caused Y? What if X had not outerre? What if I had acted differently?) EXAMPLES: Was it the aspirin that stopped my headach? Would Kennedy be alive if Owald had not killed him? What if I had not smoked the last 2 years? I. INTERVENTION QUESTIONS: What if I do? Why? (What would Y be if I do X? How can I make Y happen?) EXAMPLES: If I take aspirin, will my headache be cured? I. ASSOCIATION QUESTIONS: What if I be e? QUESTIONS: What if I be e? QUESTIONS: What if I be e? EXAMPLES: If I take aspirin, will my headache be cured? EXAMPLES: If Most and best related? How would seeing X change my belief in Y?) EXAMPLES: Mat does as wround melling benut a disease? |        | 3-LEVEL HIERARCHY                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTIVITY: Doing, Intervening<br>QUESTIONS: What If do? Why?<br>QUESTIONS: What If do.??<br>How can I make Y happen?)<br>EXAMPLES: If I take aspirin, will my headache be cured?<br>I. ASSOCIATION<br>ACTIVITY: Seeing, Observing<br>QUESTIONS: What If isee?<br>(How are the variables related?<br>How would seeing X change my belief in Y?)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | ACTIVITY: Imagining, Retrospection<br>QUESTIONS: What if I had done? Why?<br>(Was it X that caused Y? What if X had not<br>occurred? What if I had acted differently?)<br>EXAMPLES: Was it the aspirin that stopped my headache?<br>Would Kennedy be alive if Oswald had not |
| ACTIVITY: Seeing, Observing<br>QUESTIONS: What if i see ?<br>(How are the variables related?<br>How would seeing X change my belief in Y?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ACTIVITY: Doing, Intervening<br>QUESTIONS: What if I do ? Why?<br>(What would Y be if I do X?<br>How can I make Y happen?)                                                                                                                                                   |
| What does a survey tell us about the election results?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEEING | ACTIVITY: Seeing, Observing<br>QUESTIONS: What if I see ?<br>(How are the variables related?<br>How would seeing X change my belief in Y?)<br>EXAMPLES: What does a symptom tell me about a disease?                                                                         |







#### PILLAR 1: MEANINGFUL COMPACT REPRESENTATION FOR CAUSAL ASSUMPTIONS

Task: Represent causal knowledge in compact, transparent, and testable way.

- Are the assumption plausible? Sufficient?
- Are the assumptions compatible with the available data? If not, which needs repair?

Result: Transparency and testability galore

Graphical criteria tell us, for any pattern of paths, what pattern of dependencies we should expect in the data.



- "front door" extends it beyond adjustment
- do-calculus predicts the effect of policy interventions whenever feasible

#### PILLAR 3: THE ALGORITHMIZATION OF COUNTERFACTUALS

Task: Given {Model + Data}, determine what Joe's salary would be had he had one more year of education.

Solution: Algorithms have been developed for determining if/how the probability of any counterfactual sentence is estimable from experimental or observational studies, or combination thereof.

How?

- Every model determines the truth value of every
- counterfactual by a toy-like "surgery" procedure.
- Corollary: "Causes of effect" formalized

11

#### PILLAR 4: MEDIATION ANALYSIS – DIRECT AND INDIRECT EFFECTS

Task: Given {Data + Model}, Unveil and quantify the mechanisms that transmit changes from a cause to its effects.

Result: The graphical representation of counterfactuals tells us when direct and indirect effects are estimable from data, and, if so, how necessary (or sufficient) mediation is for the effect.

12

10

#### PILLAR 5: TRANSFER LEARNING, EXTERNAL VALIDITY, AND SAMPLE SELECTION BIAS

Task: A machine trained in one environment finds that environmental conditions changed. When/how can it amortize past learning to the new environment?

Solution: Complete formal solution obtained through the *do*-calculus and "selection diagrams" (Bareinboim et al., 2016)

Lesson: Ancient threats disarmed by working solutions.

#### PILLAR 6: MISSING DATA (Mohan, 2015)

Problem: Given data corrupted by missing values and a model of what causes missingness. Determine when relations of interest can be estimated consistently "as if no data were missing."

Results: Graphical criteria unveil when estimability is possible, when it is not, and how.

Corollaries:

13

15

When the missingness model is testable and when it is not.

14

- When model-blind estimators can yield consistent estimation and when they cannot.
- All results are query specific.
- Missing data is a causal problem.

#### PILLAR 7: CAUSAL DISCOVERY

Task: Search for a set of models (graphs) that are compatible with the data, and represent them compactly.

Results: In certain circumstances, and under weak assumptions, causal queries can be estimated directly from this compatibility set.

(Spirtes, Glymour and Scheines (2000); Jonas Peters etal (2018))

# CONCLUSIONS

- Model-blind approaches to AI impose intrinsic limitations on the cognitive tasks that they can perform.
- The seven tasks described, exemplify what can be done with models that cannot be done without, regardless how big the data.
- DATA SCIENCE is only as much of a science as it facilitates the interpretation of data -- a two-body problem involving both data and reality.
- DATA SCIENCE lacking a model of reality may be statistics but hardly a science.
- Human-level AI cannot emerge from model-blind learning machines.

Paper available: http://ftp.cs.ucla.edu/pub/stat\_ser/r475.pdf Refs: http://bayes.cs.ucla.edu/jp\_home.html

# THANK YOU

Joint work with: Elias Bareinboim Karthika Mohan Ilya Shpitser Jin Tian Many more . . .