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Flower #3 – Generalizing experimental findings

Continuing our examination of “the flowers of the First Law” (http://www.mii.ucla.edu/causality/?p=1354),

this posting looks at one of the most crucial questions in causal inference: “How generalizable

are our randomized clinical trials?” Readers of this blog would be delighted to learn that one

of our flowers provides an elegant and rather general answer to this question. I will describe

this answer in the context of transportability theory (http://ftp.cs.ucla.edu/pub/stat ser/r400-

reprint.pdf), and compare it to the way researchers have attempted to tackle the problem

using the language of ignorability. We will see that ignorability-type assumptions are fairly

limited, both in their ability to define conditions that permit generalizations, and in our

ability to justify them in specific applications.

1 Transportability and Selection Bias

The problem of generalizing experimental findings from the trial sample to the population as

a whole, also known as the problem of “sample selection-bias” (Heckman, 1979; Bareinboim

et al., 2014), has received wide attention lately, as more researchers come to recognize this

bias as a major threat to the validity of experimental findings in both the health sciences

(Stuart et al., 2015) and social policy making (Manski, 2013).

Since participation in a randomized trial cannot be mandated, we cannot guarantee that

the study population would be the same as the population of interest. For example, the

study population may consist of volunteers, who respond to financial and medical incentives

offered by pharmaceutical firms or experimental teams, so, the distribution of outcomes in
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the study may differ substantially from the distribution of outcomes under the policy of

interest.

Another impediment to the validity of experimental finding is that the types of individuals

in the target population may change over time. For example, as more individuals become

eligible for health insurance, the types of individuals seeking services would no longer match

the type of individuals that were sampled for the study. A similar change would occur as

more individuals become aware of the efficacy of the treatment. The result is an inherent

disparity between the target population and the population under study.

The problem of generalizing across disparate populations has received a formal treatment

in (Pearl and Bareinboim, 2014) where it was labeled “transportability,” and where necessary

and sufficient conditions for valid generalization were established (see also Bareinboim and

Pearl, 2013). The problem of selection bias, though it has some unique features, can also be

viewed as a nuance of the transportability problem, thus inheriting all the theoretical results

established in (Pearl and Bareinboim, 2014) that guarantee valid generalizations. We will

describe the two problems side by side and then return to the distinction between the type

of assumptions that are needed for enabling generalizations.

The transportability problem concerns two dissimilar populations, Π and Π∗, and requires

us to estimate the average causal effect P ∗(yx) (explicitly: P ∗(yx)
∆
= P ∗(Y = y|do(X = x)) in

the target population Π∗, based on experimental studies conducted on the source population

Π. Formally, we assume that all differences between Π and Π∗ can be attributed to a

set of factors S that produce disparities between the two, so that P ∗(yx) = P (yx|S = 1).

The information available to us consists of two parts; first, treatment effects estimated from

experimental studies in Π and, second, observational information extracted from both Π and

Π∗. The former can be written P (y|do(x), z), where Z is set of covariates measured in the

experimental study, and the latters are written P ∗(x, y, z) = P (x, y, z|S = 1), and P (x, y, z)

respectively. In addition to this information, we are also equipped with a qualitative causal

model M, that encodes causal relationships in Π and Π∗, with the help of which we need to

identify the query P ∗(yx). Mathematically, identification amounts to transforming the query

expression

P ∗(yx) = P (y|do(x), S = 1)
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into a form derivable from the available information ITR, where

ITR = {P (y|do(x), z), P (x, y, z|S = 1), P (x, y, z)}. (1)

The selection bias problem is slightly different. Here the aim is to estimate the average

causal effect P (yx) in the Π population, while the experimental information available to us,

ISB, comes from a preferentially selected sample, S = 1, and is given by P (y|do(x), z, S = 1).

Thus, the selection bias problem calls for transforming the query P (yx) to a form derivable

from the information set:

ISB = {P (y|do(x), z, S = 1), P (x, y, z|S = 1), P (x, y, z)}. (2)

In the Appendix section, we demonstrate how transportability problems and selection

bias problems are solved using the transformations described above.

The analysis reported in (Pearl and Bareinboim, 2014) has resulted in an algorithmic

criterion (Bareinboim and Pearl, 2013) for deciding whether transportability is feasible and,

when confirmed, the algorithm produces an estimand for the desired effects. The algorithm

is complete, in the sense that, when it fails, a consistent estimate of the target effect does

not exist (unless one strengthens the assumptions encoded in M).

There are several lessons to be learned from this analysis when considering selection bias

problems.

1. The graphical criteria that authorize transportability are applicable to selection bias

problems as well, provided that the graph structures for the two problems are identical.

This means that whenever a selection bias problem is characterizes by a graph for

which transportability is feasible, recovery from selection bias is feasible by the same

algorithm. (The Appendix demonstrates this correspondence).

2. The graphical criteria for transportability are more involved than the ones usually in-

voked in testing treatment assignment ignorability (e.g., through the back-door test).

They may require several d-separation tests on several sub-graphs. It is utterly unimag-

inable therefore that such criteria could be managed by unaided human judgment, no

matter how ingenious. (See discussions with Guido Imbens regarding computational
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barriers to graph-free causal inference, http://www.mii.ucla.edu/causality/?p=1241).

Graph avoiders, should reckon with this predicament.

3. In general, problems associated with external validity cannot be handled by balancing

disparities between distributions. The same disparity between P (x, y, z) and P ∗(x, y, z)

may demand different adjustments, depending on the location of S in the causal struc-

ture. A simple example of this phenomenon is demonstrated in Fig. 3(b) of (Pearl

and Bareinboim, 2014) where a disparity in the average reading ability of two cities

requires two different treatments, depending on what causes the disparity. If the dis-

parity emanates from age differences, adjustment is necessary, because age is likely

to affect the potential outcomes. If, on the other hand the disparity emanates from

differences in educational programs, no adjustment is needed, since education, in itself,

does not modify response to treatment. The distinction is made formal and vivid in

causal graphs.

4. In many instances, generalizations can be achieved by conditioning on post-treatment

variables, an operation that is frowned upon in the potential-outcome framework

(Rosenbaum, 2002, pp. 73–74; Rubin, 2004; Sekhon, 2009) but has become extremely

useful in graphical analysis. The difference between the conditioning operators used in

these two frameworks is echoed in the difference between Qc and Qdo, the two z-specific

effects discussed in a previous posting on this blog (http://www.mii.ucla.edu/causality/?p=1389).

The latter defines information that is estimable from experimental studies, whereas the

former invokes retrospective counterfactual that may or may not be estimable empiri-

cally.

In the next Section we will discuss the benefit of leveraging the do-operator in problems

concerning generalization.
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2 Ignorability versus Admissibility in the Pursuit of

Generalization

A key assumption in almost all conventional analyses of generalization (from sample-to-

population) is S-ignorability, written Yx ⊥⊥ S|Z where Yx is the potential outcome predicated

on the intervention X = x, S is a selection indicator (with S = 1 standing for selection

into the sample) and Z a set of observed covariates. This condition, sometimes written as

a difference Y1 − Y0 ⊥⊥ S|Z, and sometimes as a conjunction {Y1, Y0} ⊥⊥ S|Z, appears in

Hotz et al. (2005); Cole and Stuart (2010); Tipton et al. (2014); Hartman et al. (2015),

and possibly other researchers committed to potential-outcome analysis. This assumption

says: If we succeed in finding a set Z of pre-treatment covariates such that cross-population

differences disappear in every stratum Z = z, then the problem can be solved by averaging

over those strata.1

In graphical analysis, on the other hand, the problem of generalization has been studied

using another condition, labeled S-admissibility (Pearl and Bareinboim, 2014), which is

defined by:

P (y|do(x), z) = P (y|do(x), z, s) (3)

or, using counterfactual notation,

P (yx|zx) = P (yx|zx, sx)

It states that in every treatment regime X = x, the observed outcome Y is conditionally

independent of the selection mechanism S, given Z, all evaluated at that same treatment

regime.

Clearly, S-admissibility coincides with S-ignorability for pre-treatment S and Z; the two

notions differ however for treatment-dependent covariates. The Appendix presents scenarios

(Fig. 1(a) and (b)) in which post-treatment covariates Z do not satisfy S-ignorability, but

1Lacking a procedure for finding Z, this solution avoids the harder part of the problem and, in this sense,

it somewhat borders on the circular. It amounts to saying: If we can solve the problem in every stratum

Z = z then the problem is solved; hardly an informative statement.
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satisfy S-admissibility and, thus, enable generalization to take place. We also present scenar-

ios where both S-ignorability and S-admissibility hold and, yet, experimental findings are

not generalizable by standard procedures of post-stratification. Rather the correct procedure

is uncovered naturally from the graph structure.

One of the reasons that S-admissibility has received greater attention in the graph-based

literature is that it has a very simple graphical representation: Z and X should separate Y

from S in a mutilated graph, from which all arrows entering X have been removed. Such a

graph depicts conditional independencies among observed variables in the population under

experimental conditions, i.e., where X is randomized.

In contrast, S-ignorability has not been given a simple graphical interpretation, but it

can be verified from either twin networks (Causality, pp. 213-4) or from counterfactually

augmented graphs (Causality, p. 341), as we have demonstrated in an earlier posting on

this blog (http://www.mii.ucla.edu/causality/?p=1354). Using either representation, it is

easy to see that S-ignorability is rarely satisfied in transportability problems in which Z is

a post-treatment variable. This is because, whenever S is a proxy to an ancestor of Z, Z

cannot separate Yx from S.

The simplest result of both PO and graph-based approaches is the re-calibration or post-

stratification formula. It states that, if Z is a set of pre-treatment covariates satisfying

S-ignorability (or S-admissibility) , then the causal effect in the population at large can be

recovered from a selection-biased sample by a simple re-calibration process. Specifically, if

P (yx|S = 1, Z = z) is the z-specific probability distribution of Yx in the sample, then the

distribution of Yx in the population at large is given by

P (yx) =
∑

z

P (yx|S = 1, z)P (z) (4)

where P (z) is the probability of Z = z in the target population (where S = 0). Equation

(4) follows from S-ignorability by conditioning on z and, adding S = 1 to the conditioning

set – a one-line proof. The proof fails however when Z is treatment dependent, because the

counterfactual factor P (yx|S = 1, z) is not normally estimable in the experimental study.

(See Qc vs. Qdo (http://www.mii.ucla.edu/causality/?p=1389)).

As noted in (Keiding, 1987) this re-calibration formula goes back to 18th century de-
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mographers (Dale, 1777; Tetens, 1786) facing the task of predicting overall mortality (across

populations) from age-specific data. Their reasoning was probably as follows: If the source

and target populations differ in distribution by a set of attributes Z, then to correct for

these differences we need to weight samples by a factor that would restore similarity to

the two distributions. Some researchers view Eq. (4) as a version of Horvitz and Thomp-

son (1952) post-stratification method of estimating the mean of a super-population from

un-representative stratified samples. The essential difference between survey sampling cali-

bration and the calibration required in Eq. (4) is that the calibrating covariates Z are not

just any set by which the distributions differ; they must satisfy the S-ignorability (or ad-

missibility) condition, which is a causal, not a statistical condition. It is not discernible

therefore from distributions over observed variables. In other words, the re-calibration for-

mula should depend on disparities between the causal models of the two populations, not

merely on distributional disparities. This is demonstrated explicitly in Fig. 4(c) of (Pearl

and Bareinboim, 2014), which is also treated in the Appendix (Fig. 1(a)).

While S-ignorability and S-admissibility are both sufficient for re-calibrating pre-treatment

covariates Z, S-admissibility goes further and permits generalizations in cases where Z con-

sists of post-treatment covariates. A simple example is the bio-marker model shown in Fig.

4(c) (Example 3) of Pearl and Bareinboim (2014), which is also discussed in the Appendix.

Conclusions

1. Many opportunities for generalization are opened up through the use of post-treatment

variables. These opportunities remain inaccessible to ignorability-based analysis, partly

because S-ignorability does not always hold for such variables but, mainly, because ig-

norability analysis requires information in the form of z-specific counterfactuals, which

is often not estimable from experimental studies.

2. Most of these opportunities have been chartered through the completeness results for

transportability (Bareinboim et al., 2014), others can be revealed by simple derivations

in do-calculus as shown in the Appendix.
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3. There is still the issue of assisting researchers in judging whether S-ignorability (or

S-admissibility) is plausible in any given application. Graphs excel in this dimension

because graphs match the format in which people store scientific knowledge. Some

researchers prefer to do it by direct appeal to intuition; they do so at their own peril.
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Appendix

To each of the models represented in Fig. 1 we will provide a scenario, a problem specification

and a derivation of the target estimand.

YX Z

= 1S = 1S

= 1S

Z YX YX Z

(b) (c)(a)

L

Figure 1: (a) Generalizable transportability problem in which Z is S-admissible but S-

ignorability does not hold. (b) Generalizable selection-bias problem in which Z is S-

admissible but S-ignorability does not hold. (c) Generalizable selection-bias problem in

which S-admissibility and S-ignorability both hold, yet post-stratification (Eq. (1)) fails to

estimate the target treatment effect P (yx).

Scenario 1 X = Treatment, Y = outcome, Z = a bio-marker believed to mediate between

treatment and outcome. S = a factor (say diet) that makes the effect of X on Z different in

the two populations, Π and Π∗.
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Problem formulation.

Needed:

P ∗(yx) = P (y|do(x), S = 1)

Information available:

ITR = {P (y|do(x), z), P (x, y, z|S = 1), P (x, y, z)}.

S-admissibility:

P (y|do(x), z) = P (y|do(x), z, s)

Derivation:

P ∗(yx) = P (y|do(x), S = 1)

=
∑

z

P (y|do(x), S = 1, z)P (z|do(x), S = 1)

=
∑

z

P (y|do(x), z)P (z|do(x), S = 1)

=
∑

z

P (y|do(x), z)P (z|x, S = 1)

Each step in this derivation follows from probability theory and the assumption of S-

admissibility which permits us to remove the factor S = 1 from the first factor of the second

line. The result is an estimand in which the condition S = 1 does not appear in any

do-expression, hence it is estimable from ITR.

Scenario 2 This is a selection-bias version of the transportability problem presented in Sce-

nario 1. Assume variable L stands for location and that selection for the study preferred

subjects from one location over another. The task is to estimate the average causal effect

over the entire population.

Problem formulation.

Needed:

P (yx) = P (y|do(x))

Information available:

ISB = {P (y|do(x), z, S = 1), P (x, y, z|S = 1), P (x, y, z)}.
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S-admissibility:

P (y|do(x), z) = P (y|do(x), z, s)

Derivation:

P (yx) = P (y|do(x))

=
∑

z

P (y|do(x), z)P (z|do(x))

=
∑

z

P (y|do(x), z, S = 1)P (z|do(x))

=
∑

z

P (y|do(x), z, S = 1)P (z|x)

The first term in the sum is estimable from the biased experimental study while the

second from the target population.

Scenario 3 This is another selection-bias version of the problem presented in Scenario 1.

Assume Z represents a post-treatment complication and, naturally, people with complications

are more likely to enter the database.

Problem formulation:

The problem is identical to that of Scenario 2 with the exception that now both S-

admissibility and S-ignorability hold for variable Z. The former can be seen from its graph-

ical definition, since S separate Y from S, and the latter by noting the Z separate S from

all exogenous factors that affect Y .

Derivation:

The same as in Scenario 2. Again, we see that the final estimand calls for averaging the

z-specific effect in the experiment over all strata of Z, but is now weighted by the conditional

probability P (z|x) instead of the marginal P (z) that appears in Eq. (4).

Remark 1 Note that, in Scenario 2, if variable L is observable, then the selection bias

problem can be solved by re-calibration over L, since L is treatment-independent and satisfies

S-ignorability (and S-admissibility). It is only when L is unobserved that we must resort to

Z, a post treatment variable that does not satisfy S-ignorability.
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Remark 2 I wish to apologize to students of causation who are recent visitors to this blog and

who are probably lost by the way I move from scenario to scenario, label some S-ignorable and

others S-admissible, as if I was reading the ten commandments in giant letters. If you are

not able to follow this labeling, you are not alone. I know some very respectable universities

that offer classes in “causal inference” in which scenario reading is avoided.

All I can advise these students is to rebel; master the skill of scenario reading (it takes

only two to three minutes), then impress your instructor with what you can do that he/she

can’t. Embarrassment may succeed where reason fails.
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