
1 The Intuition Behind Inverse Probability Weighting

Michael Foster writes:

I’m an economist here in the UNC school of public health and trying to work on the

intuition of MSM for my non-methodologists collaborators. My bios and epi colleagues can
give me mechanical answers but are short on intuition at times. Here are two questions:

1. Consider a regressor that is a confounding variable but that is also a victim of un-
observed confounding itself. Why does weighting with this troublesome covariate not

cause bias that regression causes (collider bias)? In this case, I’m principally thinking
about past exposures and how to handle them in an analysis of dynamic treatment.

Marginal structural models (MSM) including them in calculating the weights; Robins
suggests that including them as covariates in the outcome equation produces the “null

paradox.”

Here’s my answer. A confounding variable has two characteristics–it is related to the
exposure and to the outcome. When we weight with that variable, we break the link

between the exposure and that variable. However, other than the portion due to the
exposure, we do not eliminate the relationship between the covariate and the outcome.

In that way (by not breaking both links), we avoid the bias created by the collider
issue.

2. How do I know what variables to include in the numerator of the MSM weight?

Here’s my answer: I would include in the weights those variables that will be included
in the analysis of the outcome. Their presence in the denominator of the weight is

essentially duplicative–we’re accounting for them there and in the outcome model.

Comment, by Judea Pearl

Your question deals with the intuition behind “Inverse Probability Weighting” (IPW), an

estimation technique used in several frameworks, among them Marginal Structural Models
(MSM). However, the division by the propensity score P (X = 1|Z = z) or the probability

of treatment X = 1 given observed covariates Z = z, is more than a step taken to improve
estimation; it is dictated by the very definition of “causal effect,” and appears therefore, in

various guises, in every method of effect estimation – it is a property of Nature, not of our
efforts to unveil the secrets of Nature.

Let us first see how this probability ends up in the denominator of the effect estimand,
and then deal with the specifics of your question, dynamic treatment and unobserved

confounders.
Suppose we had a treated subject with propensity score of 0.2, then for every such

treated subjects there would be 4 control subjects. If we want to consider what would

happen if everyone received treatment then we need to consider what happens to the
other four control subjects once they are assigned treatment. How many of them will have

outcome Y = 1 (say recovery) and how many outcome Y = 0.
The best way to answer this question is to decompose the distribution of subjects

into three sub-distributions, each representing a process the determines the probability of
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another variable. Specifically, the pre-intervention distribution P (Y = 1, X = 1, Z = z)

can be decomposed into a product of three conditional probabilities:

P (Y = 1, X = 1, Z = z) = P (Y = 1|X = 1, Z = z) ∗ P (X = 1|Z = z) ∗ P (Z = z)

where

P (Y = 1|X = 1, Z = z) describes how the outcome depends on treatment and covariate Z.

P (X = 1|Z = z) describes how subjects choose treatment prior to intervention.

P (Z = z) describes the prior distribution of the covariates.

Call the post-intervention distribution P ′, and decompose it into the same three
mechanisms,

P ′(Y = 1, X = 1, Z = z) = P ′(Y = 1|X = 1, Z = z) ∗ P ′(X = 1|Z = z) ∗ P ′(Z = z)

we ask which of the three remains invariant. Clearly, the last mechanism is invariant
P ′(Z = z) = P (Z = z) because Z is a pre-treatment covariate. Likewise, the outcome
mechanism is invariant

P ′(Y = 1|X = 1, Z = z) = P (Y = 1|X = 1, Z = z)

because Z is assumed to be the complete set of confounders, so, Y depends on X and Z
plus random noise that is not affected by the treatment. Finally, the treatment mechanism

itself undergoes a drastic change, with P ′(X = 1|Z = z) = 1 because everyone gets the
treatment

As a result, we see that the post-intervention distribution is equal to the product:

P ′(Y = 1, X = 1, Z = z) = P (Y = 1|X = 1, Z = z) ∗ P (Z = z) (1)

or the function

P ′(Y = 1, X = 1, Z = z) =
P (Y = 1, X = 1, Z = z)

P (X = 1|Z = z)
(2)

At this point, two perspectives offer themselves for analysis: we can either view the

post-treatment distribution P’ as a mutilated version of the pre-treatment distribution
P, with the treatment-probability term excised, or we can view each cell (or subject)
characterized by the tuple (Y = 1, X = 1, Z = z) to be assigned a new weight, given by

the old weight times the inverse probability of the treatment. The first perspective (Eq.
(1)) leads to estimation by regression, stratification, or propensity score (PS) matching,

while the second (Eq. (2)) leads to Inverse Probability Weighing (IPW). The asymptotic
equivalence of the two approaches is assured by the equality of (1) and (2) and, therefore,

questions that pertain to asymptotic analysis, for example, whether a bias is removed,
whether a given covariate should be “weighted on” etc, should be addressed not to the

estimation technique but to the assumptions embodied in the model; the relation between
P and P ′ is dictated by those assumptions and those assumptions only.

This partially answers your first question:

2



Why does weighting with this troublesome covariate not cause bias that regres-

sion causes (collider bias)?

Answer: Weighting with any covariate will ALWAYS cause the same bias that regression
causes. “Bias” is an asymptotic concept, hence it is invariant to shifting from regression to
weighting. “Collider bias,” for example, cannot be eliminated by either method. (BTW, a

confounder need NOT be a covariate “related to both exposure and outcome,” nor need
such a covariate be a confounder (Causality, p. 195). These definitions are outdated.)

To complete this part of the discussion, we should also note that the inverse probability
weighting (Eq. 2) can be given a counting interpretation. Suppose there are Nz subjects in

the Z = z stratum. Among these Nz subjects, those who chose treatment and recovered
count to NzP (Y = 1, X = 1|Z = z) subjects. The number of such subjects in the

post-intervention distribution is:

NzP
′(Y = 1, X = 1|Z = z) = Nz

P (Y = 1, X = 1|Z = z)

P (X = 1|Z = z)

We see that, while in the pre-intervention data, there are only NzP (Y = 1, X = 1|Z = z)
subjects in stratum Z = z who take treatment and recover, their number would increase
by the inverse probability factor

1/P (X = 1|Z = z)

if everyone is compelled to undergo treatment. Thus for example, if P (X = 1|Z = z) = 0.2,
then every subject in our dataset represents five subjects in the post-interventional data,

with identical treatment-outcome behavior.
This completes the first part of my comments which demystifies, I hope, the appearance

of the probability term in the denominator of causal effect estimators. It is based on the
modern conception of causal effects in terms of mechanism invariance and mechanism
disabling, also called “surgery” (see Causality (Pearl, 2009, Chapter 3), or my survey

paper http://ftp.cs.ucla.edu/∼kaoru/r355-tr.pdf) Other explanations are floating around,
some based on conditional independence of counterfactuals, some on “ignorability,”

“comparability,” “heterogeneity,” “exogeneity,” “exchangeability,” and perhaps more...;
they all boil down to surgery but lack its generated and intuitive appeal.

I believe the confusion that you have noticed among you collaborators may be
attributed to the slow penetration of modern concepts of causation into mainstream

literature and education. The purpose of this blog is to speed up the process.

2 Dynamic treatment and multiple confounders

The principles of surgery and invariance permits us to generalize the computation of the

post-intervention distribution to any system of multiple treatments and multiple covariates,
some affecting treatments and some affected by treatments, as long as we assume that

all confounders are observable. The idea is always to decompose the pre-intervention
distribution into a product of conditional probabilities representing causal mechanisms

and remove from the product those factors that correspond to specific interventions. The
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resulting expression is called “truncated product” in Causality 2009, and also goes by the

names Manipulation Theorem (Spirtes et al., 2000), G-computation (Robins, 1986), and
perhaps others.

To demonstrate, assume that we have two covariates, Z1 and Z2, two treatments, X1

and X2 and one outcome, Y . Assume further that the temporal order of these variables

is (Z1, X1, Z2, X2, Y ) and that every variable is affected by all its predecessors. Suppose
that we are interested in the effect of setting treatments X1 and X2 to levels x1 and x2

respectively. To compute the post-intervention distribution P ′(Z1, Z2, Y ) we need not

guess what goes into the denominator or numerator; it all follows from the truncated
product expression.

P ′(Z1, X1 = x1, Z2, X2 = x2, Y ) =
P (Z1, X1 = x1, Z2, X2 = x2, Y )

P (X1 = x1|Z1)P (X2 = x2|Z1, X1 = x1, Z2)

The denominator is simply the product of all conditional probability terms that
correspond to the local treatment variables, in our case X1 and X2. The fact that Z2 is

affected by the treatment X1 = x1 need not concern us. We need not be inhibited by
cautionary guidelines that were devised by statisticians in the pre-causal era (e.g., not to

control for covariates that are affected by the treatment (Cox, 1958, p. 58)) These were
useful guidelines in their times, and have since been replaced by modern rules, formulas
and understanding.

3 Extension to unobserved confounders.

If some of the confounders are unobserved, the causal effect of interest may not be

identifiable, and then no procedure in the world can estimate it consistently, not even
those which are wrongly believed to do so (e.g., propensity score matching, or MSM, or
others). Today we have a complete procedure for determining whether a partially observed

set of covariates is sufficient to identify a given causal effect. (See Causality (Pearl, 2009,
p. 105)).

Thus, to re-address your first question about unobserved confounding:

“Consider a regressor that is a confounding variable but that is also a victim of
unobserved confounding itself,”

we would need to see the graph before answering this question, because the answer depends
critically on how the “victim” is “victimized.”

The mixed motivation (estimation and identification) through which IPW has been
introduced to causal analysis has created a myth that weighing can simulate physical

interventions and thus solve all problems with unobserved confounders. In your words:

“When we weight with that variable, we break the link between the exposure

and that variable.”

This is not the case. While certain interventions can, under certain assumptions be
simulated by weighing, not every weighing simulates an intervention, especially not under

conditions of unmeasured confounders. The safe way to practice IPW is to start with the
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desired intervention, simulated it through the truncated product decomposition (as in

Eq. (1)) and examine what weighting scheme (if any) is implied by it.
There is no simple weighting formula for handling a general problem with unobserved

confounders, though there is a simple formula that computes P ′ from P whenever it is
feasible, and a simple rule that detects when it is infeasible. Show us the graph, and you

will get the answer in five seconds (assuming I am awake).
Regarding your second question:

“How do I know what variables to include in the numerator of the MSM weight?” Just

follow the truncated product rule – you will never go astray, guarantee!!!
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